A lysine- and glutamic acid-rich protein, KERP1, from *Entamoeba histolytica* binds to human enterocytes

Marie Seigneur,1 Joelle Mounier,2 Marie-Christine Prevost1 and Nancy Guillén1∗
1Unité Biologie Cellulaire du Parasitisme, INSERM U389, 2Unité Pathogénie Microbienne Moléculaire, INSERM U389 and 3Plate-forme de Microscopie Electronique, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.

Summary

Contact-dependent cytolysis of host cells by *Entamoeba histolytica* is an important hallmark of amoebiasis that points out the importance of molecules involved in the interaction between the parasite and the human cells. To decipher the molecular and cellular mechanisms supporting the invasion of the intestinal epithelium by *E. histolytica*, we analysed proteins involved in the interaction of the parasite with enterocytes. Affinity chromatography revealed several amoebic proteins interacting with purified brush border of differentiated Caco2 cells. Among them were found the intermediate subunit of the Gal/GalNAc lectin, an α-actinin-like protein and two new proteins KERP1 and KERP2 rich in lysine and glutamic acid. *In silico* analysis revealed the presence of KERP2 in the closely related non-pathogenic amoeba species *Entamoeba dispar* but not of KERP1. In addition, polymerase chain reaction analysis allowed to suggest the absence of kerp1 homologous gene in *E. dispar*. Therefore, we concentrated on the cellular analysis of KERP1. Cloning of the KERP1-encoding gene, production of a recombinant protein in *Escherichia coli* and production of a specific antibody allowed us to show the following properties: (i) purified KERP1 binds to epithelial cell surface, (ii) KERP1 is located on the plasma membrane and in vesicles of trophozoites and (iii) KERP1 is delivered in the interstitial area between the trophozoites and the intestinal cells.

Introduction

The human parasite *Entamoeba histolytica* is the aetiological agent of amoebiasis, responsible for more than 50 million clinical cases and for 50 000–100 000 deaths worldwide per year. Contact-dependent cytolysis of host cells by *E. histolytica* is an important hallmark of amoebiasis that points out the importance of molecules involved in the interaction between the parasite and the human cells (Stanley, 2003). Therefore, surface molecules of *E. histolytica* have been extensively studied to discover key actors in parasite virulence. So far, the best-characterized parasite surface molecule is the Gal/GalNAc-inhibitable lectin which enables adhesion of the trophozoite to intestinal epithelial cells by high-affinity interaction with cell surface glycoproteins (Petri et al., 2002). The Gal/GalNac lectin is composed of a transmembrane heavy subunit (170 kDa) linked by disulphide bounds to a glycosylphosphatidylinositol (GPI)-anchored light subunit (31–35 kDa) and associated to a GPI-anchored intermediate subunit (150 kDa) (Cheng et al., 1998). Other molecules of interest for amoeba invasion include a membrane serine-rich protein, SREHP, which is abundant on the trophozoite surface but with unknown functions (Stanley et al., 1995), ARIEL, which corresponds to a family of asparagine-rich proteins with unknown functions constitutively expressed by trophozoites (Mai and Samuelson, 1998), and the EhCPADH complex, composed of a cysteine protease EhCP112 and of EhADH112 adhesin containing the adhesion domain to host cells. This complex is involved in adherence, phagocytosis and destruction of the host cells as shown by significant reduction of all three virulence steps in the presence of antibodies against EhADH112 (Garcia-Rivera et al., 1999; Martinez-Lopez et al., 2004).

In addition to proteins, the most abundant surface molecule of *E. histolytica* trophozoites are GPI-anchored proteophosphoglycans (PPGs). As for the Gal/GalNac lectin, anti-PPG(s) antibodies reduce parasite adhesion and cytotoxicity on cells suggesting an important role of the PPGs in parasite–host interaction (Marinet et al., 1997).

We are interested in the molecular and cellular mechanisms involved in the interaction between *E. histolytica* and epithelial cells. In this study, a cellular analysis of this interaction was conducted by using cultured human enterocytes from the Caco2 cell line. Interaction with and destruction of epithelial cells by *E. histolytica* was first...
visualized by using electronic and confocal microscopy. We have observed a particular tropism of amoebae for the brush border (BB) of enterocytes, suggesting that there are cellular components that may function as a signal for tissue invasion. To find new surface compounds involved in the pathogenesis of *E. histolytica*, a biochemical approach was attempted and proteins of *E. histolytica* binding to the BB were purified. Among these, the intermediate subunit of the Gal/GalNAc lectin was identified in a fraction also containing an actinin-like protein. In addition to this fraction, two novel proteins, lysine (K) and glutamic acid (E) enriched, were identified and named KERP1 and KERP2. Further characterization of KERP1 suggested that it is localized on the plasma membrane of the trophozoites and in internal vesicles and binds to host cell surface.

Results

Microscope observation of enterocyte(s) destruction by *E. histolytica*

Entamoeba histolytica invades the human intestine in a process involving enterocyte killing. To visualize the early steps of cell destruction by *E. histolytica*, we examined cell morphological changes after the contact between the parasite and cultured enterocytes. The cellular model chosen for enterocytes was the human colon carcinoma Caco2 cell line that differentiates like enterocytes from the apical region of the intestinal villi (Pinto *et al*., 1983).

Transmission electron microscopy (TEM) experiments allowed us to describe major changes in cell morphology during interaction of Caco2 cells with *E. histolytica* (Fig. 1). As expected, the Caco2 cells were well polarized

![Fig. 1. Transmission electron micrographs of *Entamoeba histolytica* trophozoites interacting with Caco2 cell monolayer.](image-url)
KERPI binds to human cell monolayers

and displayed a highly organized BB covering the apical surface. In the presence of *E. histolytica*, the first contact was made between the trophozoite’s plasma membrane and the BB microvilli squashed underneath it (Fig. 1A and B). The presence of long microvilli extensions adherent to amoeba surface was indicative of either the human cell reaction against the parasite, or the repeated tearing off of microvilli by the strength of adhesive components from the amoeba surface. The complete destruction of the microvilli beneath the trophozoite was the most usual observation (Fig. 1C). The trophozoite showed an electron dense region at the area of contact with enterocytes indicating the reorganization of parasite cytoskeleton after contact with the Caco2 monolayer (Fig. 1C). The interaction of *E. histolytica* with the Caco2 monolayer ended with cell death and its phagocytosis by the trophozoites showing a phagocytic cup delimited by cytoskeleton dense material (Fig. 1D).

Analysis by laser confocal microscopy enabled us to visualize the intimate adhesion between the enterocytes BB and the trophozoite as well as the consequences on the microfilaments organization (Fig. 2). Pieces of BB, labelled by anti-villin antibody, stuck to the parasite surface with some pieces being phagocytosed that were distinguished inside the trophozoite (Fig. 2A and B). The morphology of the epithelial monolayer was strongly affected by the contact with the parasite, showing a drastic decrease in thickness with a major collapse of the actin cytoskeleton (Fig. 2C) thus revealing the amoeba cytotoxicity.

Purification of *E. histolytica* plasma membrane proteins interacting with the enterocytes

The Gal/GalNac lectin mediates parasite adhesion to the enterocytes. Inhibition of the Gal/GalNac lectin by addition of galactose or by blocking the Gal/GalNac lectin signal-ling through a dominant negative strategy reduces adherence by 60% (Vines *et al.*, 1998). Thus, the hypothesis can be made that other parasite surface proteins might be involved in the adhesion process. To identify these proteins, a biochemical assay of affinity chromatography was developed. Brush border from differentiated Caco2 cells was purified and coated on affigel beads. Purified biotinylated parasite plasma membrane proteins were submitted to interaction with these beads. After elution, we recovered a fraction enriched in biotinylated proteins interacting with the BB, indicating that the conditions used for this affinity chromatography were useful. Nevertheless, abundant parasite proteins were still bound to the beads especially the Gal/GalNac lectin. In preparative experiments using non-biotinylated proteins, we succeeded in recovering proteins with molecular masses of roughly 75, 37 and 20 kDa. The three bands recovered from acrylamide gel were endolysine digested, the peptides were separated by HPLC and the amino acid sequence of some peptides was successfully determined. Computer search for protein identity by using the peptide sequences allowed us to determine the nature of some proteins revealed in this experiment.

Identification of proteins interacting with purified brush border from human enterocytes

The first peptide, LYLPPYYFSVTK, corresponded to the *E. histolytica* Gal/GalNac lectin IgI1 and IgI2 proteins (amino acids 457–467 of locus 53.m00171/119.m00118 respectively). IgI is a 150 kDa protein family that interacts with the Gal/GalNac lectin (Cheng *et al.*, 1998). The protein must have been proteolysed on the amoeba surface or during the experiment leading to a molecular weight of 75 kDa instead of 150 kDa. The second peptide, GTLELDELLK, corresponded to the actinin-like proteins of 72 and 63 kDa (Nickel *et al.*, 2000) (two loci:
A third sequenced peptide, from the 75 kDa region, did not present any homology to the actually available *E. histolytica* database.

We succeeded in the analysis of one peptide from the 37 kDa protein, AEEIVFLKK; it corresponds to amino acids 134–142 of locus 76.m00139 of *E. histolytica*. This is a hypothetical protein encoded by only one gene. The amino acid sequence of four peptides from the 20 kDa protein was then determined: EIVEMINELANALNK, TITILNAQPPLK, ILLEEIEGAPTJK and DIFYEN corresponding to amino acids 30–44, 45–56, 140–153 and 179–184, respectively, of locus 77.m00174. All four are part of an *E. histolytica* hypothetical protein encoded by only one gene. These two novel proteins were then further analysed.

Molecular description of two *E. histolytica* proteins rich in lysine and glutamic acid

The amino acid sequences of the two entire open reading frames (ORFs), 20 kDa and 37 kDa, were obtained by computer analysis (Fig. 3). These proteins of 184 and 239 amino acids respectively (predicted molecular masses of 21.5 and 27.4 kDa) have similar composition; they are basic with an isoelectric point of 9.7 and 10.5 respectively. These proteins are rich in lysine with 25% and 25.5% of the total amino acids and in glutamic acid with 19% and 14.2% of them; these two predominant amino acids are distributed all along the protein sequences. These chemical characteristics suggested to us the name of the proteins: KERP1 for the 21.5 kDa protein and KERP2 for the 27.4 kDa protein [lysine (K)- and glutamic acid (E)-Rich Protein]. KERP1 and KERP2 are predicted to have α-helical structures and to be localized in the extracellular milieu, although neither a transmembrane domain nor a GPI anchor and no consensus signal peptide have been found in their amino acid sequence.

A BLAST computer analysis showed that a protein sharing 87% identity and 91% homology (224 out of 239 amino acids) with KERP2 exists in the sequence segment 35b05.p1k (Sanger Institute sequencing project) of the *Entamoeba dispar* genome. In contrast, BLAST computer analysis of the *E. histolytica* and *E. dispar* genomes allowed to conclude that no homologue of KERP1 exists.

Fig. 3. Biochemical characterization of KERP proteins.

A. Amino acid sequence of the proteins KERP1 and KERP2. The peptides sequenced allowing the identification of these proteins are underlined. The main data of these proteins are given: KERP1 and KERP2 have similar compositions; they are basic proteins rich in lysine (K) and glutamic acid (E).

B. Polymerase chain reaction allowing detection of the KERP1 and the β-tubulin-encoding genes from *Entamoeba histolytica* (lanes 1 and 4), *E. dispar* (lanes 2 and 5) and *Crithidia* (lanes 3 and 6). KERP1 DNA is 602 bp long and β-tubulin DNA 1380 bp.

![Protein Data: KERP1 KERP2](image-url)
in *E. dispar*. A polymerase chain reaction (PCR) analysis using genomic DNA purified from the two species reinforced the bioinformatic analysis (Fig. 3). To further analyse KERP1 by biochemical, molecular and cellular approaches, we constructed a recombinant version of the KERP1-encoding gene by adding a histidine tag at the 5’ end; this construct was transfected in *E. coli* and allowed us to recover a soluble recombinant KERP1 protein from bacterial extracts that was used for *in vitro* binding assays and for antibody production.

KERP1 binds to human cell monolayers

To test the ability of purified KERP1 to interact with enterocytes, we measured the potential binding of KERP1 to enterocytes surface using fluorescent latex beads coated with purified proteins including recombinant KERP1 (rKERP1), the lectin Concanavalin A (ConA) as a positive control, and bovine serum albumine (BSA) as a negative control. The soya bean agglutinine (SBA) was used as a positive control specific for differentiated Caco2 cells. This lectin is known for its capacities to bind and disrupt the Caco2 cell BB (Draaijer et al., 1989; Koninkx et al., 1992). The fluorescent beads were incubated on confluent monolayers for 3 h. To determine whether rKERP1’s binding capacity was specific of the differentiated Caco2 cells, this binding test was performed in parallel using HeLa cells, non-differentiated Caco2 and differentiated Caco2 cell monolayers. These experiments have been reproduced several times, seven times on a Caco2 monolayer, three times on a non-differentiated Caco2 monolayer and four times on a HeLa cell monolayer, and gave similar results; one representative experiment is shown in Fig. 4. As expected, BSA-coated beads did not bind to differentiated Caco2 monolayers. rKERP1-coated beads bound 6.3 times more efficiently to differentiated Caco2 cells than ConA-coated beads and SBA-coated beads bound almost as efficiently as rKERP1-coated beads. An increase of rKERP1 binding was found on non-differentiated Caco2 cells, but the rKERP1-coated beads bound only 1.7-fold more efficiently than ConA-coated beads and SBA-coated beads bound even less. On HeLa cells, rKERP1 binding also increased but rKERP1- and ConA-coated beads bound as efficiently and SBA-coated beads bound slightly less.

These results indicated that in these *in vitro* experiments rKERP1 binds very efficiently to epithelial cell types independently of their differentiation state, probably because it is a highly charged molecule. Moreover, on differentiated Caco2 cells rKERP1 binds at high efficiency compared with ConA, suggesting that rKERP1 could specifically interact with the BB, characteristic of differentiated enterocytes. This is a fact that needs further exploration *in vivo*.

![Fig. 4.](image) **Fig. 4.** KERP1 binds to cells. The graph shows the number of fluorescent latex beads coated with purified proteins, rKERP1 (black), ConA (white), SBA (grey) and BSA (light grey) binding to a Caco2 monolayer (Caco2), a non-differentiated Caco2 monolayer (CacoND) and a HeLa cell monolayer (HeLa) after 3 h incubation. The experiment has been conducted seven times on a Caco2 monolayer, three times on a non-differentiated Caco2 monolayer and four times on a HeLa cell monolayer. All experiments gave similar results and this graph shows one representative experiment. rKERP1-coated beads bound very efficiently to all cell types. Unlike ConA, rKERP1 and SBA bound very well to differentiated Caco2 cells.

Cellular localization of KERP1 in *E. histolytica*

To localize KERP1 in *E. histolytica*, we used immunoblotting and immunostaining approaches. Parasite cell compartments were separated into three fractions, the plasma membrane (PM), the internal membranes and vesicles (V) and the cytoplasm (C). These three fractions, along with total extracts of trophozoites (T), were analysed by immunoblotting (Fig. 5A) with a mouse anti-KERP1 antibody. The presence of KERP1 was observed in the plasma membrane fraction and in the internal membranes and vesicles fraction. Control of protein integrity in the cytoplasmic fraction has been obtained by immunoblotting with an anti-actin antibody.

Immunostaining of entire trophozoites with anti-KERP1 antibody was analysed by confocal microscopy (Fig. 5B). In non-permeabilized cells, a whole membrane staining was found in 10% of parasites (a, b, c), whereas 90% of the trophozoites displayed a local staining on one or two edges (c, d). After light permeabilization, a vesicular staining was observed (b). These micrographs confirmed that KERP1 localizes to the parasite’s surface, nevertheless, KERP1 labelling was not homogenous on all trophozoites. To test whether the contact of *E. histolytica* with Caco2 cells could trigger the relocalization of KERP1 to the surface, immunostaining was performed on trophozoites incubated on top of differentiated Caco2 cell monolayers. A membrane staining was observed on 10% of parasites (data not shown), indicating that contact between the trophozoite and the BB did not stimulate the relocalization of KERP1 to the surface.
Localization of KERP1 during *E. histolytica* interaction with enterocytes

To examine the precise localization of KERP1 during contact between *E. histolytica* and enterocytes, TEM and immunostaining experiments were conducted. Diverse localizations of KERP1 were found and are shown in Fig. 6. KERP1 was located inside the trophozoite close to the membrane of vesicles (Fig. 6A) or in non-determined structures inside the cytoplasm (Fig. 6B). KERP1 was also clustered into patch-like structures at the edge of the trophozoite (Fig. 6B). The patch-like clusters of KERP1 were also found outside the trophozoite in the interstitial medium (Fig. 6C), as if these clusters had been discarded by the parasite. KERP1 was in addition found at the contact area between the trophozoite and microvilli from the Caco2 cells (Fig. 6D). Interestingly, KERP1 was also bound (clustered or not) to the BB of Caco2 cells that did not appear in contact with the parasite (Fig. 6E and F). KERP1 was mainly bound to microvilli either scraped off the Caco2 cells or still as a part of a well-organized healthy Caco2 BB.

These extensive microscope observations realized here confirmed the ability of the KERP1 to bind to the BB of Caco2 cells as it was previously indicated by the *in vitro* experiments (Fig. 4). Finding KERP1 in the interstitial medium and bound to intact Caco2 cells is a striking observation suggesting the release of KERP1 by the parasite.

Discussion

An important feature of the human intestinal tract is the large surface area of the mucosal epithelium that serves as a port of entry for invading microorganisms. Colonizing microbes in the intestinal lumen, such as parasites, continuously pose a potential threat of infection. *E. histolytica* is a worldwide spread protozoan parasite colonizing the human bowel. About 90% of people infected with *E. histolytica* are asymptptomatically colonized. The factors that control the invasiveness of human intestine by *E. histolytica* are incompletely understood. Nevertheless, after mucus depletion and upon activation of signals for tissue invasion, trophozoites of *E. histolytica* adhere to the intestinal epithelium. Although adherence to epithelial cells is important for infection, very little is known about the interaction of pathogens with the enterocytes. Pioneer work has been done with the bacterial pathogen *Escherichia coli* that targets intestinal cells. The enteropathogenic *E. coli* (EPEC) is a major cause of diarrhoea in the developing world; it colonizes the intestinal epithelium inducing attaching and effacing (A/E) lesions on the BB of enterocytes. Upon adhesion to the surface of enterocytes, the bacterium triggers the degeneration of cell BB with loss of microvilli and the formation of a pedestal upon which EPEC reside. These major cell surface modifications result from deep reorganization of the BB cortical cytoskeleton orchestrated by the bacteria, hijacking the cell signal transduction pathways (Celli *et al.*, 2000). In this work, microscope observations of the interaction between *E. histolytica* and intestinal Caco2 epithelial cells have revealed dramatic changes at the enterocyte BB structural level. As was previously suggested (Rigothier *et al.*, 1991), we here confirmed a particular tropism of amoebae for the BB that is degraded as soon as the amoebae arrive at the apex of the enterocytes. The parasite, rolling on top of the cells, mechanically scrapes off the BB microvilli and eventually phagocytoses them. We observed fragments of BB either floating between the Caco2 cells and the trophozoites or phagocytosed by trophozoites. These find-
ings indicate that the disorganization of microvilli does not solely result from an enzymatic hydrolytic reaction but also from a parasite mechanical action exerted upon adhesion.

A specific structure resembling a long microvilli coming from the Caco2 cells and surrounding the parasite has been observed by TEM (Fig. 1). This structure could be a reaction of the enterocyte after contact with *E. histolytica*, such as an EPEC-like response that induces the growth of microvilli before their effacement. Nevertheless, this structure could also be the primary cilium present singly on most vertebrate cells (Pazour and Witman, 2003).

Unlike the pre-cited bacterium, *E. histolytica* rather destroys the BB, kills the host cells and phagocytoses them. The cytolytic process driven by *E. histolytica* correlates with reorganization of the amoebic cytoskeleton at the region of contact with the host cell. Changes in the enterocyte cytoskeleton after amoebae contact have also been observed as cell junctions are disturbed and microfilaments appeared delocalized. These cellular observations correlate to biochemical studies that have precedentely demonstrated changes at the phosphorylation level of ZO-1 in enterocytes entering in contact with *E. histolytica* (Leroy et al., 2000). In addition, these studies have shown in vitro that *E. histolytica* cysteine proteinases proteolyse the villin of enteric cells causing a disturbance of microvilli (Lauwaet et al., 2003). The authors strongly suggest a direct interaction of these lytic enzymes with host villin, implying that amoeba proteases enter inside the enterocyte. However, they do not exclude an indirect action through a subverted host-signalling cascade. This mechanism of BB destruction seems specific to *E. histolytica* because other pathogens degenerating the microvilli as EPEC do not proteolyse villin. However, these results show the ability of *E. histolytica*, as the other pathogens, to interfere with the host cell cytoskeleton in its own fashion, ending in cell microfilament disorganization. Interestingly, this microfilament delocalization was not seen when the myosin II-inactivated amoeba strain was used instead of the wild-type strain (Coudrier et al., 2005), confirming the capital role of the parasite cytoskeleton in host cell killing (Arhets et al., 1998).

Entamoeba histolytica adhere to the intestinal epithelium by interaction of the parasite Gal/GalNAc-inhibitable lectin with host-derived glycoproteins, which are high-

© 2005 Blackwell Publishing Ltd, Cellular Microbiology, 7, 569–579

Fig. 6. Immunoelectron microscopy localization of KERP1 following co-incubation of *Entamoeba histolytica* with Caco2 cells. KERP1 was revealed by immunostaining with a rabbit anti-KERP1 antibody and a secondary antibody coupled to gold and enhanced with silver. A. Trophozoites displaying labelling of KERP1 at the membrane of an internal vesicle. B. KERP1 appeared clustered in a patch-like structure at the edge of the trophozoite. C. Aggregate of KERP1 (indicated by arrow a) on a secreted-like structure located between the trophozoite on the left and the Caco2 cells on the bottom right. KERP1 bound to microvilli scraped off the Caco2 cells is shown by arrow b. D. Accumulation of KERP1 at the interface of the trophozoite on the bottom right and a microvilli of the Caco2 brush border (BB). E and F. Clusters of KERP1 (indicated by arrows) appeared clearly binding to the Caco2 BB on the right. KERP1 binds mainly to the microvilli and was not in contact with the trophozoite. Scale bars, 200 nm.
affinity ligands for amoebic lectin (Petri et al., 2002). Interaction of the parasite with epithelial cell results in transfer of the lectin to the host and this active process requires an intact viable parasite (Leroy et al., 1995). The Gal/GalNAc lectin is not the unique protein involved in parasite adhesion to epithelial cells as blockade of adhesion by the presence of galactose, or by genetic inactivation of the lectin signal transduction, leads to residual adhesive activity (Vines et al., 1998). Recently, it has been suggested that the Gal/GalNAc lectin serves as a nucleation site for a number of different proteins potentially involved and required for interaction with the host (Petri et al., 2002).

In this work, biochemical experiments first have shown that parasite surface proteins other than the Gal/GalNAc lectin mediate adhesion and second have revealed several proteins interacting with host cells. Among these proteins was the intermediate subunit of the Gal/GalNAc lectin (Igl), confirming a role for this protein in parasite adhesion (Cheng et al., 1998).

Other proteins here revealed were the actinin-like proteins of 63 and 72 kDa belonging to the spectrin-like family (Nickel et al., 2000) that play a role in the cytoskeleton network organization. This finding indicates that the actinin-like protein associates to the plasma membrane of trophozoites maybe through its potential interaction with surface receptors. Interestingly, a spectrin-like protein associates to the plasma membrane of trophozoites maybe through its potential interaction with surface receptors. Interestingly, a spectrin-like protein associates to the plasma membrane of trophozoites. This hypothesis does not account for the patch-like structures seen at the parasite plasma membrane. This hypothesis does not exclude an adhesion activity for KERP1 but suggests an eventual additional role. We now have to explore the function of KERP1 and evaluate its participation in the virulence of E. histolytica.

Experimental procedures

Strains and culture conditions

The pathogenic E. histolytica (strain HM1:IMSS) was cultivated in TYI-S-33 medium (Diamond, 1961) at 37°C. The human Caco2 cell line was grown in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal calf serum and 1% non-essential amino acids at 37°C in a 10% CO2 incubator. Caco2 cells (1.5 × 105) are inoculated in a 12-well plate and cultured for 14–16 days for differentiated Caco2 layers and for 4 days for non-differentiated Caco2 layers. For electron microscopy analysis, epithelial cells were grown until polarization occurred on polycarbonate filters. For amoebae–Caco2 cell interactions, trophozoites and cells were washed twice with pre-warmed serum-free DMEM medium. Amoebae were added to the cell monolayer at a ratio of 1 amoeba to 20 cells in DMEM serum-free medium. The coculture was incubated at 37°C in 10% CO2 atmosphere for 30 min. The human HeLa cell line was grown in DMEM supplemented with 10% fetal calf serum and 1% non-essential amino acids at 37°C in a 10% CO2 incubator. HeLa cells (1.5 × 104) are inoculated in a 12-well plate and cultured for 4 days. E. coli strain TG1 was used for plasmid construction and production. This strain was propagated in LB medium at 37°C and when containing a plasmid, 50 µg ml−1 ampicillin was added to the medium.

Transmission electron microscopy and immunolabelling

For the ultrastructural analysis, the amoebae interacting with Caco2 cells were washed in PBS and fixed for 1 h at room temperature in a 0.1 M cacodylate buffer (pH 7.4) containing MgCl2, NaCl, 5 mM, sucrose 0.05 M and 2.5% glutaraldehyde. The filters were then post-fixed for 1 h in a 0.1 M cacodylate buffer (pH 7.4) containing 1% osmium tetroxyde. Filters were then washed three times in the same buffer and dehydrated with increasing concentrations of ethanol and embedded in Epon. Ultrathin sections were cut on a Leica Ultracut UCT and examined with a JEOL 1200EXII TEM microscope at 80 kV accelerating voltage.

For immunolabelling, the amoebae interacting with Caco2 cells were fixed for 1 h at 4°C in a 0.1 M Störens buffer (pH 7.2) containing 4% paraformaldehyde (PFA) and 0.1% glutaraldehyde. The filters were washed in 0.1 M Störens and then briefly washed three times in distilled water. The samples were stained for 30 min with 0.5% uranyl acetate at 4°C, diluted in Michaelis buffer, dehydrated with increasing concentrations of alcohol at decreasing temperatures and embedded in Lowicryl K4M. After
polymerization under UV light, thin sections were cut, collected on Formvar carbon-coated nickel grids and immunolabelled. The grids were floated for 1 h on PBS containing 0.5% BSA and 5% normal goat serum then incubated for 1 h at room temperature with an anti-KERP1 antibody (1/20 dilution). The grids were then washed with PBS containing 0.5% BSA, 0.1% cold water skin fish (PBG) and floated on PBG containing goat anti-mouse IgG+H+L diluted at 1/25 (Amersham Life Science) antibodies coupled to 10 nm colloidal gold particles. After 1–2 h incubation the grids were washed, post-fixed with 1% glutaraldehyde diluted in PBS, washed with water, stained with 2% uranyl acetate and observed under a JEOL microscope at 80 kV.

Confocal scanning laser microscopy (CSLM)

For confocal analysis the co-culture was fixed in 3.5% PFA. To label F-actin, co-culture was treated either with phalloidin-FITC or with specific mouse antibody raised against villin (used at 1/20, a gift of E. Courdiere, Curies Institute, Paris). To label the trophozoites, co-culture was treated with specific rabbit antibodies raised against either alcohol dehydrogenase (ADH, used at 1/50, a gift from S. Stanley, Washington University) or pyruvate-ferredoxin oxidoreductase (PFO, used at 1/50, a gift of E. Orozco, CINVESTAV, Mexico). Fluorescent parasites and cells were examined on a Zeiss LSM510 confocal laser scanning microscope. Observations were performed on 30 optical planes of 1 μm. Images were further analysed using LSM510 software from Zeiss.

For epifluorescence labelling of trophozoites, amoebae were fixed in 3% PFA, 0.1% glutaraldehyde (Fig. 6A and B) or 0.2 M cacodylic acid (Fig. 6C and D) PBS for 20 min at room temperature. They were further incubated in 50 mM NH₄Cl PBS for 10 min at room temperature and washed in 0.1% sodium borohydrate PBS at room temperature (Fig. 6A and B only). They were then blocked in 1% BSA PBS for 30 min at room temperature and incubated, overnight at 4°C, in mouse anti-KERP1 antibody diluted at 1:20 in 1% BSA PBS. After several washes in 1% BSA PBS at room temperature, samples were incubated for 1 h at room temperature in anti-mouse Ig coupled to fluorescent Alexa 488 (Molecular Probes, Eugene, OR) diluted at 1:200 in 1% BSA PBS. Finally, the samples were washed in 1% BSA PBS and mounted on glass slide with 10 mg ml⁻¹ Dabco in 80% glycerol. Fluorescent samples were examined on a Zeiss LSM510 confocal laser-scanning microscope.

Preparation of protein extracts

Total E. histolytica crude protein extracts were obtained from 10⁷ trophozoites. These were washed in PBS and lysed in 50 μl of 10 mM Tris (pH 7.5), protease inhibitor mixture [10 μM leupeptine (Sigma), 1 mM N-ethylmaleimide (Sigma), 2 mM p-chloromercuribenzoate (Sigma), 2 mM 4-(2-aminoethyl) benzenesulphonyl fluoride (Uptima), complete mini EDTA-free (protease inhibitor cocktail, Roche)] and 1% SDS at 100°C for 10 min.

Entamoeba histolytica cytoplasm, vesicles and internal membranes and plasma membranes were isolated using the amoeba-specific sugar gradient separation technique (Aley et al., 1980). Biotinylation coupled to streptavidin revelation of trophozoite surface proteins were made as described by Andrews and Bjorvatn (1991).

Isolation of BB from Caco2 cells was based on standard protocols used to obtain BB from intestinal mucosa (Keller and Mooseker, 1982). Briefly, 3 x 10⁷ cells grown for 14 days were washed in PBS, washed in buffer A (imidazole 10 mM pH 7.4, EDTA 5 mM, EGTA 1 mM, DTT 0.2 mM and protease inhibitor from Sigma), incubated for 20 min in buffer A and scraped. After centrifugation during 5 min at 300 g the cell pellet was resuspended in 0.5 ml of buffer A and passed once through the cell cracker (EMBL, Precision Engineering, Heidelberg, Germany). Cell homogenate was adjusted to 4 ml with buffer A and centrifuged for 10 min at 1000 g. The pellet was washed three times in buffer A, and twice in buffer B. Brush borders were isolated from contaminated nuclei by resuspending the final pellet in 42% sucrose in buffer B and layered on a cushion of 50% sucrose before centrifugation at 45 000 g. Brush borders were collected at the interface of the two sucrose solutions. The quality of the preparation was monitored by light microscopy.

To isolate HeLa cell membranes, 5 x 10⁶ HeLa cells were washed twice with PBS and scraped in PBS. The cells were then washed twice in PBS, 0.5 mM CaCl₂, 1 mM MgCl₂ and spun for 5 min at 700 g at 4°C. The pellet was resuspended and incubated for 30 min on ice in 1 ml final volume of 50 mM Tris (pH 7), 250 mM sucrose, 150 mM NaCl, 1 mM EDTA and complete mini EDTA-free (protease inhibitor cocktail, Roche). Cells were lysed in a cell cracker and then spun at 1000 g for 10 min at 4°C. The supernatant containing the cytoplasm and the membranes was ultracentrifuged at 100 000 g for 1 h at 4°C. The pellet containing the membranes was resuspended in 10 mM Tris (pH 7) and protease inhibitor cocktail; protein concentration was measured using the Bradford reagent.

Determination of E. histolytica plasma membrane proteins interacting with Caco2 brush border

Thirty microlitres of Affi-gel beads (Bio-Rad ref. 153-6046) were washed three times in 100 μl of cold distilled water. Beads were incubated with 80–100 μg of BB proteins in 500 μl of PBS, over-night at 4°C with gentle shaking. Brush border-coupled beads were then washed three times in 500 μl of PBS. Purified amoebic plasma membrane proteins (100 μg) were incubated with the prepared beads in 500 μl of 10 mM Tris buffer pH 7.5 in the presence of 50 mM octylglucoside and 50 mM NaCl, with gentle shaking at 4°C for 2–3 h. Brush border-coated beads interacting with amoebic proteins were centrifuged and washed twice in 1 ml of the same buffer. Amoebic proteins were then eluted in 50 μl of 10 mM Tris buffer pH 7.5 added with 50 mM octylglucoside and 1 M NaCl. Eluted proteins were precipitated in 5% tricarboxylic acid (TCA) in the presence of 10 μg of lysozyme, protein carrier, for 2 h at 4°C. The precipitated proteins were pelleted and washed with 100 μl of acetone, dried for 1 min and resuspended in loading buffer. The amoebic membrane protein fraction thus obtained is analysed by SDS-PAGE on a 10% acrylamide gel.

Computer protein analysis

Protein identity was obtained by bioinformatic comparison using the BLAST program at NCBI nr database or at TIGR Entamoeba genome project. Molecular characterization of KERP proteins was performed by the PREDICT PROTEIN program (EMBL, Heidelberg).
Purification of recombinant KERP1 protein

The gene kerp encoding the KERP1 protein (without the first 52 nucleotides) was cloned in the expression vector, pQE-30 (Qiagen). The DNA was PCR amplified from E. histolytica genomic DNA using the following primers: 5'-GCA GGA TTC CTT CTC AAA AAA GAA GTA TTA ATT GAA-3' for the 5' end and 5'-GTA AGT ATA AAT TAA TTG AAA TAT GGA TCC ATC TTT GAA-3' for the 3' end. These oligonucleotides enabled the insertion of two BamHI sites on each side of the PCR fragment. The PCR product was then cloned in the BamHI site of the pQE30 plasmid. Thus the kerp gene was in frame with a histidine tag at its 5' end under an IPTG-regulated promoter. E. coli strain TG1 was transformed with this new vector and propagated in the 50 g ml⁻¹ ampicillin LB medium at 37°C. When the culture reached an OD of 1, KERP1 protein expression was induced by adding 0.5 mM IPTG for 2 h at 37°C. Bacteria were lysed by sonication and the KERP1 protein was purified using the Clontech TALON Metal affinity resin kit with an elution buffer composed of 50 mM NaP, 500 mM NaCl and 150 mM imidazole pH 7. Protein quantification was made by the Bradford reagent and the protein quantity not coated on beads by the Bradford technique was then removed and the cell layers with beads were fixed with 3.7% PFA for 30 min at 37°C. The medium was then removed and the cell layers with beads were fixed with 3.7% PFA for 30 min at 37°C. Wells were then washed twice with PBS and 1% BSA and once with PBS. The fluorescent beads bound to the cell layers were counted automatically by the SIMPLE PCI program on a ZEISS microscope with a magnification of 5x, an excitation wavelength of 488 nm and an emission filter centred on 535 nm. Two wells were tested for each experiment and for each well; four randomly chosen fields were counted. The results, for one experiment, is the mean number of beads counted in eight fields. The number of beads bound to cell monolayer is directly proportional (linear range) to the number of beads incubated on the monolayer. Linearity of binding was observed from 5×10^4 to 2×10^6 inoculated beads, whatever the nature of the protein coated on beads was (data not shown). This enabled us to express results for the same number of beads inoculated on monolayers for each protein. In Fig. 4, results are expressed as the number of fluorescent beads bound to one field of cell monolayer for the inoculation of 5.6×10^5 purified coated beads.

Immunodetection of proteins

Samples of proteins (7 g for amoebic cytoplasmic, vesicles and internal membranes and plasma membranes extracts and 50 µg for total amoebic extracts) were resolved by SDS-PAGE on a 12% acrylamide gel and electrotransferred onto a PVDF membrane (Immobilon P, Millipore) and proteins were detected by Western blotting. The following primary antibodies were used: a mouse polyclonal anti-KERP1 antibody (obtained in this work) at 1:100 and a mouse monoclonal anti-actin clone C4 (ICN) at 1:200. Secondary antibodies were peroxidase-conjugated anti-mouse Ig (Nordic Immunological Laboratories) at 1:8000 and peroxidase-conjugated anti-rabbit Ig (Jackson) at 1:8000. Membranes were washed in 1% non-fat milk, 0.1% Tween20, PBS and finally treated with the ECL Western blotting detection reagent (Amersham) and exposed on Kodak (Rochester, NY) Biomax MR X-ray film.

Acknowledgements

We thank S. Stanley for anti-ADH antibodies, E. Orozco for anti-PFO antibodies and E. Coudrier for anti-villin antibodies and for advice in the BB purification procedure. Thanks to D. Mirelman for purified E. dispar DNA. This work was supported by grants from the French Ministry of National Education through the PRFMMP programme and by Grant INCO-DEV from the Fifth Framework Program of the European Union. M. Seigneur is a senior researcher of the National Institute of Agronomical Research.

References

© 2005 Blackwell Publishing Ltd, Cellular Microbiology, 7, 569–579

